

HOW TO READ OUR CERTIFICATE OF ANALYSIS (COA)

Using Lightscale Labs, we perform all tests required under state law for recreational cannabis, medical cannabis, and industrial hemp. Chromatography is used for all required tests, a technique where liquid or gas separates different cannabinoids, pesticides, and residual solvents so that each can be identified and measured precisely.

PAGE I CANNABINOID POTENCY

TEST & HARVEST DATES

Here you can see the dates related to this particular batch of product, including when it was processed, sampled, analyzed, and when the report was finished.

Total CBD and THC content in mg/ml and percentage.

Δ9-THC, THCA, CBD, CBDA, and CBN in accordance with OAR 333-007-0430, plus minor cannabinoids.

PASS or FAIL results for Pesticides, Solvents, and Potency within this COA.

Sh	ot-15-1	12							
Danodan Hemp (503) 290-4075	Sa	ample Type: Tincture ample Date: 12/2/201 nalysis Date: 12/3/20 aport Date: 12/9/2019	9 19		rc Batch ID: rc Sample ID:			Harvest/Process Report ID: LS-1912	Date: 11/25/2019
Potency Batch Potency Metho	is Date: 12/3/2019 ID: CAN_120319C d: JAOAC 2015.1								
	.5 mg/I				6	51 ···	9		
n q)72 mg/	m	Total THC						
			0.0892%						
Samples: ZJH-PE Density = 1.09 g/	DF-PFD, TTT-GNB-SHT mL								
						1.0		and the second	
						1000			
Analyte	Description	LOQ	RPD (%)	Min.	Max.	Avg.		100	Unit:
∆9тнс	Delta-9 Tetrahydrocannabir	nol 0.28	5.05	0.947	0.996	Avg. 0.972	-	-	Unit:
∆9ТНС ТНСА	Delta-9 Tetrahydrocannabir Tetrahydrocannabinolic aci	nol 0.28	5.05	0.947 ND	0.996 ND	Avg. 8.972 ND	2	-	Unit:
A9THC THCA CBD	Delta-9 Tetrahydrocannabir Tetrahydrocannabinolic aci Cannabidiol	nol 0.28 Ld 0.28 0.28	5.05 0.00 0.534	0.947 ND 16.1	0.996 ND 16.2	16.1	2	_	Unit:
A9THC THCA CBD CBDA	Delta-9 Tetrahydrocannabir Tetrahydrocannabinolic aci Cannabidiol Cannabidiolic acid	nol 0.28 Id 0.28 0.28 0.28	5.05 0.00 0.534 4.24	0.947 ND 16.1 0.352	0.996 ND 16.2 0.367	16.1 0.360	2	_	Unit:
A9THC THCA CBD CBDA A8THC	Delta-9 Tetrahydrocannabir Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabir	nol 8.28 Id 9.28 8.28 9.28 0.28 nol* 8.28	5.05 0.00 0.534 4.24 0.00	0.947 ND 16.1 0.352 ND	0.996 ND 16.2 0.367 ND	16.1 0.360 ND	2	_	Unit:
A9THC THCA CBD CBDA A8THC THCV	Delta-9 Tetrahydrocannabir Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabir Tetrahydrocannabivarin*	1001 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00	0.947 ND 16.1 0.352 ND ND	0.996 ND 16.2 0.367 ND ND	16.1 0.360 ND ND	-		Unit:
A9THC THCA CBD CBDA A8THC THCV CBG	Delte-9 Tetrahydrocannabin Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabir Tetrahydrocannabivarin* Cannabigerol*	nol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493	0.947 ND 16.1 0.352 ND ND 0.441	0.996 ND 16.2 0.367 ND ND 0.444	16.1 0.360 ND 0.443	-		Unit:
A9THC THCA CBD CBDA ASTHC THCV CBG CBGA	Delta-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabidiolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabivarin* Cannabigerol* Cannabigerol*	nol 0.28 ld 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00	0.947 ND 16.1 0.352 ND ND 0.441 ND	0.996 ND 16.2 0.367 ND 0.444 ND	16.1 0.360 ND 0.443 ND	-		Unit:
A9THC THCA CBD CBDA A&THC THCV CBG CBGA CBC	Delta-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabiddol Cannabiddolic acid Delta-8 Tetrahydrocannabin Tetrahydrocannabivarin* Cannabigerol* Cannabigerol* Cannabigerol	nol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72	0.947 ND 16.1 0.352 ND ND 0.441 ND 0.586	0.996 ND 16.2 0.367 ND 0.444 ND 0.615	16.1 0.360 ND 0.443 ND 0.601	-		Unit:
A9THC THCA CBD CBDA A8THC THCV CBG CBGA CBC CBCA	Della-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabidioli acid Della-8 Tetrahydrocannabin Tetrahydrocannabivarin* Cannabigerol* Cannabigerol* Cannabichromene* Cannabichromene	nol 0.28 dd 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND	16.1 0.360 ND 0.443 ND 0.601 ND	-		Unit:
A9THC THCA CBD CBDA A8THC THCV CBG CBGA CBC CBCA CBN	Della-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabidioli acid Della-8 Tetrahydrocannabin Tetrahydrocannabivarin+ Cannabigerole acid+ Cannabigerole acid+ Cannabichroment acid+ Cannabinol	nol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq< td=""><td>0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq< td=""><td>16.1 8.360 ND 8.443 ND 8.601 ND <loq< td=""><td>-</td><td></td><td>Unit:</td></loq<></td></loq<></td></loq<>	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq< td=""><td>16.1 8.360 ND 8.443 ND 8.601 ND <loq< td=""><td>-</td><td></td><td>Unit:</td></loq<></td></loq<>	16.1 8.360 ND 8.443 ND 8.601 ND <loq< td=""><td>-</td><td></td><td>Unit:</td></loq<>	-		Unit:
ASTHC THCA CBD CBDA ASTHC THCV CBG CBGA CBC CBCA CBN Total THC	Delta-9 Tetrahydrocannabin Tetrahydrocannabinolic ac: Cannabidiolic acid Delta-8 Tetrahydrocannabir Tetrahydrocannabivarin* Cannabigerol* Cannabichromenic acid* Cannabichromenic acid* Cannabichromenic acid* Cannabinol	nol 0.28 dd 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996</loq 	16.1 0.360 ND 0.443 ND 0.601 ND <loq 0.972</loq 			Unit:
ASTRC TRCA CBD CBDA ASTRC CBG CBGA CBGA CBC CBCA CBC CBCA CBN Total TRC Total CBD	Della-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabidioli acid Della-8 Tetrahydrocannabin Tetrahydrocannabivarin+ Cannabigerole acid+ Cannabigerole acid+ Cannabichroment acid+ Cannabinol	nol 0.28 dd 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05 0.605	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5</loq 	16.1 0.360 ND 0.443 ND 0.601 ND <loq 0.972 16.5</loq 	-		Unit
ASTHC THCA CBD CBDA ASTHC THCV CBG CBGA CBC CBCA CBN Total THC	Della-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabidioli acid Della-8 Tetrahydrocannabin Tetrahydrocannabivarin* Cannabigerol* Cannabigerol: acid* Cannabichromente acid* Cannabichromente acid* Cannabinol AOTHC + (THCA × 0.877) CBD + (CBDA × 0.877)	nol 0.28 dd 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996</loq 	16.1 0.360 ND 0.443 ND 0.601 ND <loq 0.972</loq 	-		Unit
ASTIC THCA CBD CBDA ASTHC CBG CBGA CBG CBGC CCBCA CBCA CBCA CBCA	Della-9 Tetrahydrocannabin Tetrahydrocannabinolic aci Cannabidioli acid Della-8 Tetrahydrocannabin Tetrahydrocannabivarin* Cannabigerol* Cannabigerol* Cannabichromen* Cannabichromen* Cannabichromene* Cannabichromene Cannabichromene Cannabichromene* Cannabichrom	nol 0.28 dd 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05 0.605	8.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5</loq 	16.1 8.369 ND 0.443 ND 0.601 ND <loq 0.972 16.5 18.5</loq 	-		Unit
ASTINC THCA CBD CBDA ASTINC CBGA CBGA CBCA CBCA CBCA Total THC Total CBD Total	Delta-9 Tetrahydrocannabir Tetrahydrocannabirolic acf Cannabidol Delta-8 Tetrahydrocannabir Tetrahydrocannabir Tetrahydrocannabir Cannabigerolic acid+ Cannabigerolic acid+ Cannabichromene Ca	hol 0.28 kd 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05 0.605	6.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5 18.6</loq 	16-1 0.360 ND 0.443 ND 0.601 ND <l0q 0.972 16.5 18.5</l0q 	-		
ASTINC THCA CBD CBDA ASTINC CBGA CBGA CBGA CBGA CBGA CBGA CBGA CBG	Delta-9 Tetrahydrocannabin Tetrahydrocannabinolic act Cannabidiolic acid Delta-8 Tetrahydrocannabin Tetrahydrocannabirarin* Cannabigerolic acid* Cannabichromene* Cannabichromene* Cannabichromene acid* Cannabichromene aci	hol 0.28 Ld 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05 0.605	6.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4 18.4</loq 	6.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5 18.6</loq 	16.1 0.360 ND 0.443 ND 0.641 ND <l0q 0.972 16.5 18.5 3/2019</l0q 	-		P
ASTINC THCA CBD CBDA AASTINC CBDA AASTINC CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Delta-9 Tetrahydrocannabin Tetrahydrocannabinolic act Cannabidiolic acid Delta-8 Tetrahydrocannabin Tetrahydrocannabirarin* Cannabigerolic acid* Cannabichromene* Cannabichromene* Cannabichromene acid* Cannabichromene aci	hol 0.28 dd 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05 0.605	6.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4 18.4</loq 	6.996 ND 16.2 6.367 ND 0.444 ND 6.615 ND 4.00 6.905 18.6 18.6	16.1 0.360 ND 0.443 ND 0.641 ND <l0q 0.972 16.5 18.5 3/2019</l0q 	-		

HOW TO READ OUR CERTIFICATE OF ANALYSIS (COA)

PAGE 2-3 **PESTICIDE DATA**

All cannabis must be tested for the presence of a number of different contaminants, including pesticides. Danodan uses hemp that is grown using organic techniques, ensuring we use only the purest, cleanest hemp.

anodan Hempworks	Sample Date: 12/3/2019 Analysis Date: 12/3/2019			Metrc Batch ID: Metrc Sample ID:		Report	Narvest/Process Date: 11/25/2019 Report ID: LS-191204-28				_		
Pesticides										Pass 😔			
Sample Da	ZIH-PDF-PFD 1		Limite	100 Notes	Fisher	Analyse	THU BOF BED	TTT-GNB-SHT	1 incides	100 Notes	Status	25/2019	
banectin	ND	ND		0.1	Pass	Metalaxyl	ND	ND	0.2	0.1	Pass	8	
cephate	ND	ND	0.4	0.1	Pass	Methiocarb	ND	ND	0.2	0.1	Pass		
cequinocyl	ND	ND	2.0	1.5	Pass	Methomyl	ND	ND	0.4	0.1	Pass		
etamiprid Idicarb	ND	ND	0.2	0.1	Pass	Methyl Parathion	ND	ND	0.2	0.2 0.2	Pass		
ldicarb toxystrobin	ND ND	ND ND	0.4	0.1 0.1	Pass	MGK-254 Myclobutanil	ND ND	ND	0.2	0.2	Pass		
fenazate	ND	ND	0.2	0.1	Pazz	Naled	ND	ND	0.5	0.2	Pass	nits (%)	Notes
ifenthrin	ND	ND	0.2	0.1	Page	Oxamyl	ND	ND	1.0	0.1	Pass	- 150	
scalid	ND	ND	0.4	0.1	Pass	Paclobutrazol	ND	ND	0.4	0.1	Pass	- 150	
arbaryl	ND	ND	0.2	0.1	Pass	Permethring	ND	ND	0.2	0.1	Pass	- 150	
arbofuran Norantraniliprole	ND	ND ND	0.2	0.1 0.1	Pass	Phosmet Piperonyl Butoxide	ND	ND	0.2 2.0	0.1	Pass	- 150	
lorantraniliprole	ND	ND	0.2	0.1	Pass	Piperonyl Butoxide Frallethrin	ND ND	ND	2.0	0.1	Pass	- 150	
lorpyrifos	ND	ND	0.2	0.1	Page	Propiconazole	ND	ND	0.4	0.1	Pass	- 150	
ofentezine	ND	ND	0.2	0.1	Pass	Proposur	ND	ND	0.2	0.1	Pass	- 150	
rfluthrin	ND	ND	1.0	0.5	Pass	Pyrethrina	ND	ND	1.0	0.5	Pass	- 150	
permethrin	ND	ND	1.0	0.1	Pass	Pyridaben	ND	ND	0.2	0.1	Pass	- 150	
minozide	ND ND	ND ND	1.0	0.5 0.1	Pass	Spinozad Spiromezifen	ND ND	ND ND	0.2	0.1	Pass	- 150	
ichlorvos (DDVP)	ND	ND	1.0	0.5	Pass	Spirotetramat	ND	ND	0.2	0.1	Pass	- 150	
imethoate	ND	ND	0.2	0.1	Pass	Spiroxamine	ND	ND	0.4	0.1	Pass	- 150	
thoprophos	ND	ND	0.2	0.1	Pass	Tebuconazole	ND	ND	0.4	0.1	Pass	- 150	
ofenprox	ND	ND	0.4	0.1	Pass	Thiscloprid	ND	ND	0.2	0.1	Pass	- 150	
toxazole enoxycarb	ND ND	ND ND	0.2	0.1 0.1	Pass	Thiamethoxam Trifloxystrobin	ND ND	ND	0.2	0.1	Pass	- 150	
enoxycarb enovroximate	ND	ND	0.2	0.1	Pass	TFITIORYSTFODIA	ND	NU	0.2	0.1	1411	- 150	
ipronil	ND	ND	0.4	0.1	Pass							- 150	
lonicamid	ND	ND	1.0	0.1	Pass							- 150	LR
ludicsonil	ND	ND	0.4	0.1	Pass							- 150	
exythiares maralil	ND ND	ND ND	1.0	0.1 0.1	Pass							- 150	
sidacloprid	ND	ND	0.2	0.1	Pass							- 150	
esoxim-methyl	ND	ND	0.4	0.1	Pass								
alathion	ND	ND	0.2	0.1	Pass								
ited, samples were receive	d in good conditis	on and Quality with an asteri	Control ak (+) an	samples met acco	ptance criter pe of accredi	and GM 332-847. Results perta is. This Certificant shall not tation and for informational p compliance with GMR 332-864 m	be reproduced e arposes only.	ucept in full, w	ithout ti	e eritten	2 of 6	J	

PAGE 4-5 RESIDUAL SOLVENT DATA

Certain solvents can be harmful to human health and safety if they remain in the final product. If a producer uses a solvent or concentrate in their product, thorough testing is required to ensure that potential residual amounts are below recognized safety limits. Danodan uses a high-purity concentrate in our yellow and red label products, so Residual Solvent testing is required. Our blue label products do not use any solvents or concentrates; therefore, no Residual Solvent testing is needed for blue label products.

Danodan Hempworks (503) 290-4079	Sample Type: Tin Sample Date: 12/ Analysis Date: 12 Report Date: 12/5	2/2019 /3/2019	Metrc Batch Metrc Sample		Harvest/Process Date: Report ID: LS-191204-		÷
Residual Solvents Sample Data	5		Solvents Ana Solvents Bais	lysis Date: 12/3/2019 ch ID: RES_120319A	Method: EPA 5021A Unit: µg/g (ppm)	Pass 😔	25/2019
Analyte	Z.IH-PDF-PFD	TTT-GNB-SHT	RPD (%)	Limits	LOQ Notes	Status	8
1,4-Dioxane	ND	ND	0.00	388.0	50.0	Pass	•
2-Butanol	ND	ND	0.00	5000.0	250.0	Pass	
2-Ethoxyethanol	ND	ND	0.00	168.8	50.0	Pass	
Acetone	ND	ND	0.00	5000.0	258.0	Pass	
Acetonitrile	ND	ND	0.00	410.0	50.0	Pass	
Benzene	ND	ND	0.00	2.0	2.0	Page	
Butanes	ND	ND	0.00	5000.0	250.0	Page	
Cunene	ND	ND	0.00	78.8	50.0	Pass	
Cyclohexane	ND	ND	0.00	3559.0	50.0	Pass	
Ethyl Acetate	ND	ND	0.00	5000.0	258.0	Pass	
Ethyl Ether	ND	ND	0.00	5000.0	258.0	Pass	
Ethylene Glycol	ND	ND	0.00	628.8	258.8	Page	
Ethylene Oxide	ND	ND	0.00	50.0	50.0	Page	
Heptane	ND	ND	0.00	5000.0	250.0	Page	
Nexaties	ND	ND	0.00	298.0	50.0	Page	
Isopropanol (2-Propanol)	ND	ND	0.00	5000.0	50.0	Pass	
Isopropyl Acetate	ND	ND	0.00	5000.0	258.0	Pass	
Methanol	<l00< td=""><td><1.00</td><td>0.00</td><td>3000.0</td><td>258.8</td><td>Pass</td><td></td></l00<>	<1.00	0.00	3000.0	258.8	Pass	
Dichloromethane	ND	ND	0.00	0.603	50.0	Pass	
Pentanes	ND	ND	0.00	5000.0	258.0	Pass	
Propane	ND	ND	0.00	5000.0	258.8	Pass	
Tetrahydrofuran	ND	ND	0.00	728.0	58.8	Pass	
Toluene	ND	ND	0.00	898.8	50.0	Pass	
Xylenes	ND	ND	0.00	2170.0	50.0	Pass	
							I
Lightmaile Laba is accredited by OBELA noted, samples were readined in good or approval of Lightmaile Laba. Results an	andition and Quality Control (samples net acceptance cri	teria. This Certifics	te shall not be reproduce		[∞] 4 of 6	I

LOQ - (Limit of Quantitation):

The lowest quantity of a substance that can be reliably measured. If a product measures <LOQ, that means that the substance was detected, but at levels below which it can be accurately measured. This is different from ND, which means that none of that substance was detected.

RPD (%) - Relative Percent Difference:

Each sample we send to the lab is tested multiple times, and the results of the various tests are averaged to give the final results. RPD represents the average variation in measurement of a certain substance between multiple rounds of testing

2535 N Ross Ave Portland, OR 97227 (503) 493-2535

Sleep-03

Danodan Hempworks AG-R1058177IHH 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079

Potency

Potency Analysis Date: 2/3/2022 Potency Batch ID:CAN_020322C Potency Method: JAOAC 2015.1 Harvest/Process Date: 1/27/2022 Sample Date: 2/1/2022 Analysis Date: 2/3/2022 Report Date: 2/7/2022 Report ID: LS-220207-14 Client Batch ID: Sleep-03 Metrc Batch ID:

Metrc Sample ID:

Sample Type: Tinctures Sample Plan: WW-MG-FC-ZT_20220201_1A Sample Procedure: 160721_LAB-SOP_SampleCollection-v010

Unit Potency: 30 ml retail unit 1.05 mg THC per 2.0 ml serving 31.06 mg CBD per 2.0 ml serving

Total CBD 1.43%

Total THC

info@lightscale.com

OLCC #010-1003340D344

ORFLAP #4112

0.0482%

Samples: BGH-PHN-PRH, XTX-CJB-CDB

Analyte	Description	LOQ	RPD (%)	Min.	Max.	Avg.	
	•						
Д9ТНС	Delta-9 Tetrahydrocannabinol	0.011	7.05	0.506	0.543	0.525	
THCA	Tetrahydrocannabinolic acid	0.011	0.00	ND	ND	ND	_
CBD	Cannabidiol	0.011	0.525	15.4	15.4	15.4	-
CBDA	Cannabidiolic acid	0.011	1.53	0.211	0.215	0.213	•
∆8THC	Delta-8 Tetrahydrocannabinol*	0.011	0.00	ND	ND	ND	_
THCV	Tetrahydrocannabivarin*	0.011	0.00	ND	ND	ND	_
CBG	Cannabigerol*	0.011	1.89	0.399	0.406	0.403	-
CBGA	Cannabigerolic acid*	0.011	0.00	ND	ND	ND	-
CBC	Cannabichromene*	0.011	2.37	0.636	0.651	0.644	-
CBCA	Cannabichromenic acid*	0.011	0.00	ND	ND	ND	-
CBN	Cannabinol*	0.011	0.00	0.0185	0.0185	0.0185	•
Total THC	Δ9THC + (THCA × 0.877)		7.05	0.506	0.543	0.525	-
Total CBD	CBD + (CBDA × 0.877)		0.500	15.5	15.6	15.6	_
Total			0.800	17.1	17.2	17.1	

Compliance

Potency

Within limits

Analysis Date: 2/3/2022

Pass ⊘

Aaron Troyer Chief Science Officer

Lightscale Labs is accredited by ORELAP (Lab #4112) for analysis in compliance with OAR 333-064 and OAR 333-007. Results pertain to submitted samples only. Unless otherwise noted, samples were received in good condition and Quality Control samples met acceptance criteria. This Certificate shall not be reproduced except in full, without the written approval of Lightscale Labs. Results marked with an asterisk (*) are not within scope of accreditation and for informational purposes only.

 2535 N Ross Ave
 info@lightscale.com

 Portland, OR 97227
 ORELAP #4112

 (503) 493-2535
 OLCC #010-1003340D344

Sleep-03

Danodan Hempworks AG-R1058177IHH 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079

Harvest/Process Date: 1/27/2022 Sample Date: 2/1/2022 Analysis Date: 2/3/2022 Report Date: 2/7/2022 Report ID: LS-220207-14 Client Batch ID: Sleep-03 Metrc Batch ID:

Metrc Sample ID:

Potency QC Analysis Date: 2/3/2022 Potency QC Batch ID: CAN_020322C Sample Type: Tinctures Sample Plan: WW-MG-FC-ZT_20220201_1A Sample Procedure: 160721_LAB-SOP_SampleCollection-v010

Method: JAOAC 2015.1 Unit: µg/g (ppm)

Analyte	Blank	LOQ	LCS	LCS Spike	LCS Rec (%)	Limits (%)	Notes
Δ9ΤΗC	ND	0.011	21.4	21.0	102	80 - 120	
THCA	ND	0.011	20.7	21.4	96.6	80 - 120	
CBD	ND	0.011	22.9	23.0	99.4	80 - 120	
CBDA	ND	0.011	18.1	19.5	92.8	80 - 120	

POTENCY - LIMIT OF DETECTION

Verified: 060221

Method: 160819_LAB-SOP_MethodValidation-CannabinoidPotency-v002.docx

Matrix	Analyte	LOD (ppm)	LOD (mg/g)
EXTRACT	Δ9THC	2.8	0.0028
	THCA	0.56	0.00056
	CBD	2.22	0.00222
	CBDA	0.52	0.00052
FLOWER	Δ9THC	1.88	0.00188
	THCA	5.32	0.00532
	CBD	1.31	0.00131
	CBDA	0.78	0.00078

 2535 N Ross Ave
 info@lightscale.com

 Portland, OR 97227
 ORELAP #4112

 (503) 493-2535
 OLCC #010-1003340D344

Sleep-03

Danodan Hempworks AG-R10581771HH 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079 Harvest/Process Date: 1/27/2022 Sample Date: 2/1/2022 Analysis Date: 2/3/2022 Report Date: 2/7/2022 Report ID: LS-220207-14 Client Batch ID: Sleep-03 Metrc Batch ID:

Metrc Sample ID:

Sample Type: Tinctures Sample Plan: WW-MG-FC-ZT_20220201_1A Sample Procedure: 160721_LAB-SOP_SampleCollection-v010

Qualifier Flag Descriptions

- J Reported result is an estimate the value is less than the minimum calibration level but greater than the estimated detection limit (EDL)
- U The analyte was not detected in the sample at the estimated detection limit (EDL)
- E Exceeds calibration range
- D Dilution data result was obtained from the analysis of a dilution
- B Analyte found in sample and associated blank
- C Co-eluting compound
- R Relative Percent Difference (RPD) outside control limits
- NR Analyte not reported because of problems in sample preparation or analysis
- ND Non-Detect
- X Results from reinjection/repeat/re-column data
- EMC Estimated maximum possible concentration indicates that a peak is detected but did not meet the method required criteria
- M Manual integration
- PS Peaks split
- HB Control acceptance criteria are exceeded high and the associated sample is below the detection limit
- LB Control acceptance criteria are exceeded low and the associated sample exceeds the regulatory limit
- ME Marginal Exceedance
- LR Low Recovery Analyte
- LOQ Limit of Quantitation