

# HOW TO READ OUR CERTIFICATE OF ANALYSIS (COA)

Using Lightscale Labs, we perform all tests required under state law for recreational cannabis, medical cannabis, and industrial hemp. Chromatography is used for all required tests, a technique where liquid or gas separates different cannabinoids, pesticides, and residual solvents so that each can be identified and measured precisely.

### PAGE I CANNABINOID POTENCY

### ITEST & HARVEST DATES

Here you can see the dates related to this particular batch of product, including when it was processed, sampled, analyzed, and when the report was finished.



Total CBD and THC content in mg/ml and percentage.



Δ9-THC, THCA, CBD, CBDA, and CBN in accordance with OAR 333-007-0430, plus minor cannabinoids.



PASS or FAIL results for Pesticides, Solvents, and Potency within this COA.

| CL                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     |                       |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|--------------------|
| <b>5n</b>                                                                                                                                                                         | ot-15-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     |                       |                    |
| Danodan Hemp                                                                                                                                                                      | works Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ample Type: Tincture                                                                     | 15                                                                                                                      | Met                                                                                                                                                                                                                                                                                                                         | rc Batch ID:                                                                                                                                                                                                       |                                                                                                                                    |     | Harvest/Proces        | s Date: 11/25/2019 |
| (503) 290-4079                                                                                                                                                                    | Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ample Date: 12/2/20<br>nalysis Date: 12/3/20<br>eport Date: 12/9/201                     | 19                                                                                                                      | Met                                                                                                                                                                                                                                                                                                                         | rc Sample ID:                                                                                                                                                                                                      |                                                                                                                                    |     | Report ID:<br>LS-1912 | 04-28              |
| Potency                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     |                       |                    |
| Potency Analys                                                                                                                                                                    | is Date: 12/3/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     | -                     |                    |
|                                                                                                                                                                                   | D: CAN_120319C<br>d: JAOAC 2015.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    | /   |                       |                    |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    | -                                                                                                                                  | 1-  |                       |                    |
| 16                                                                                                                                                                                | 5 mg/ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          | <b>TotalCBD</b>                                                                                                         |                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                  |                                                                                                                                    |     |                       |                    |
| 10.                                                                                                                                                                               | <b>5 ma</b> /I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mL.                                                                                      | 1.51%                                                                                                                   |                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                  |                                                                                                                                    |     |                       |                    |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             | 10.                                                                                                                                                                                                                |                                                                                                                                    | 100 |                       |                    |
| _                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                |                                                                                                                                    |     |                       |                    |
| 00                                                                                                                                                                                | <b>72 mg/</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          | <b>Total THC</b>                                                                                                        |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     |                       |                    |
| U.3                                                                                                                                                                               | / <b>Z</b> mq/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mL                                                                                       | 0.0892%                                                                                                                 |                                                                                                                                                                                                                                                                                                                             | 1 A                                                                                                                                                                                                                |                                                                                                                                    |     |                       |                    |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                  |                                                                                                                                    |     |                       |                    |
| Samples: ZJH-PD                                                                                                                                                                   | F-PFD, TTT-GNB-SHT<br>nL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     |                       |                    |
| Density = 1.09 g/r                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     |                       |                    |
| Density = 1.09 g/r                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     | and the second second |                    |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                    |     | and the second        | -                  |
| Analyte                                                                                                                                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LOQ                                                                                      | RPD (%)                                                                                                                 | Min.                                                                                                                                                                                                                                                                                                                        | Max.                                                                                                                                                                                                               | Avg.                                                                                                                               |     | a ser                 | Unit: r            |
| Analyte<br>A9THC                                                                                                                                                                  | Description<br>Delta-9 Tetrahydrocannabir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nol 0.28                                                                                 | 5.05                                                                                                                    | 0.947                                                                                                                                                                                                                                                                                                                       | 0.996                                                                                                                                                                                                              | Avg.<br>8.972                                                                                                                      | 2   | 1                     | Unit: r            |
| Analyte<br>A9THC<br>THCA                                                                                                                                                          | Description<br>Delta-9 Tetrahydrocannabir<br>Tetrahydrocannabinolic aci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nol 0.28<br>id 0.28                                                                      | 5.05                                                                                                                    | 0.947<br>ND                                                                                                                                                                                                                                                                                                                 | 0.996<br>ND                                                                                                                                                                                                        | Avg.<br>8.072<br>ND                                                                                                                | -   | 1                     | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD                                                                                                                                                   | Description<br>Delta-9 Tetrahydrocannabir<br>Tetrahydrocannabinolic aci<br>Cannabidiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nol 0.28<br>id 0.28<br>0.28                                                              | 5.05<br>0.00<br>0.534                                                                                                   | 0.947<br>ND<br>16.1                                                                                                                                                                                                                                                                                                         | 0.996<br>ND<br>16.2                                                                                                                                                                                                | 16.1                                                                                                                               | 2   | -                     | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA                                                                                                                                           | Description<br>Delta-9 Tetrahydrocannabin<br>Tetrahydrocannabinolic act<br>Cannabidiol<br>Cannabidiolic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nol 0.28<br>id 0.28<br>0.28<br>0.28                                                      | 5.05<br>0.00<br>0.534<br>4.24                                                                                           | 0.947<br>ND<br>16.1<br>0.352                                                                                                                                                                                                                                                                                                | 0.996<br>ND<br>16.2<br>0.367                                                                                                                                                                                       |                                                                                                                                    | 2   | 2                     | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD                                                                                                                                                   | Description<br>Delta-9 Tetrahydrocannabir<br>Tetrahydrocannabinolic aci<br>Cannabidiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nol 0.28<br>id 0.28<br>0.28<br>0.28                                                      | 5.05<br>0.00<br>0.534                                                                                                   | 0.947<br>ND<br>16.1                                                                                                                                                                                                                                                                                                         | 0.996<br>ND<br>16.2                                                                                                                                                                                                | 16.1                                                                                                                               | -   | -                     | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA                                                                                                                                           | Description<br>Delta-9 Tetrahydrocannabin<br>Tetrahydrocannabinolic act<br>Cannabidiol<br>Cannabidiolic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nol 0.28<br>id 0.28<br>0.28<br>0.28                                                      | 5.05<br>0.00<br>0.534<br>4.24                                                                                           | 0.947<br>ND<br>16.1<br>0.352                                                                                                                                                                                                                                                                                                | 0.996<br>ND<br>16.2<br>0.367                                                                                                                                                                                       | 16.1<br>0.360                                                                                                                      | 2   | -                     | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA<br>ASTHC                                                                                                                                  | Description<br>Delta-9 Tetrahydrocannabir<br>Tetrahydrocannabinolic act<br>Cannabidiol<br>Cannabidiolic actd<br>Delta-8 Tetrahydrocannabir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nol 0.28<br>id 0.28<br>0.28<br>0.28<br>nol* 0.28                                         | 5.85<br>0.80<br>0.534<br>4.24<br>0.80                                                                                   | 0.947<br>ND<br>16.1<br>0.352<br>ND                                                                                                                                                                                                                                                                                          | 0.996<br>ND<br>16.2<br>0.367<br>ND                                                                                                                                                                                 | 16.1<br>0.360<br>ND                                                                                                                | 2   |                       | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA<br>A&THC<br>THCV                                                                                                                          | Description<br>Delta-9 Tetrahydrocannabin<br>Tetrahydrocannabinolic aci<br>Cannabidol<br>Cannabidolic acid<br>Delta-B Tetrahydrocannabir<br>Tetrahydrocannabivarin*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nol 0.28<br>10 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                              | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00                                                                           | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>ND                                                                                                                                                                                                                                                                                    | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>ND                                                                                                                                                                           | 16.1<br>0.360<br>ND<br>ND                                                                                                          | -   |                       | Unit: n            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA<br>A&THC<br>THCV<br>CBG                                                                                                                   | Description<br>Delta-5 Tetrahydrocannabir<br>Tetrahydrocannabinolic aci<br>Cannabidiol<br>Cannabidiolic acid<br>Delta-8 Tetrahydrocannabir<br>Tetrahydrocannabirarin*<br>Cannabigerol*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nol 0.28<br>id 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                      | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493                                                                  | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>ND<br>0.441                                                                                                                                                                                                                                                                           | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>ND<br>0.444                                                                                                                                                                  | 16.1<br>0.360<br>ND<br>0.443                                                                                                       | -   |                       | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA<br>A8THC<br>THCV<br>CBG<br>CBGA                                                                                                           | Description<br>Delta-9 Tetrahydrocannabin<br>Tetrahydrocannabinolic aci<br>Cannabidiol<br>Cannabidiolic acid<br>Delta-8 Tetrahydrocannabivarin*<br>Cannabigerol+<br>Cannabigerol+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nol 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                         | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00                                                          | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>ND<br>0.441<br>ND                                                                                                                                                                                                                                                                     | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND                                                                                                                                                                  | 16.1<br>8.368<br>ND<br>ND<br>8.443<br>ND                                                                                           | -   |                       | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA<br>A8THC<br>THCV<br>CBG<br>CBGA<br>CBC                                                                                                    | Description<br>Delta-9 Tetrahydrocannabir<br>Tetrahydrocannabinolic aci<br>Cannabidiolic acid<br>Delta-8 Tetrahydrocannabir<br>Tetrahydrocannabivarin*<br>Cannabigerolic acid*<br>Cannabigerolic acid*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nol 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                         | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72                                                  | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>ND<br>0.441<br>ND<br>0.586                                                                                                                                                                                                                                                            | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615                                                                                                                                                         | 16.1<br>0.360<br>ND<br>0.443<br>ND<br>0.601                                                                                        | -   |                       | Unit: r            |
| Analyte<br>A9THC<br>THCA<br>CBD<br>CBDA<br>A8THC<br>CBGA<br>CBGA<br>CBCA                                                                                                          | Description<br>Delta-9 Tetrahydrocannabir<br>Tetrahydrocannabinlic aci<br>Cannabidol<br>Cannabidolic acid<br>Delta-8 Tetrahydrocannabir<br>Tetrahydrocannabivarin*<br>Cannabigerol*<br>Cannabigerola acid*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nol 8.28<br>id 6.28<br>6.28<br>0.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8 | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00                         | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.441<br>ND<br>0.586<br>ND                                                                                                                                                                                                                                                            | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND                                                                                                                                                   | 16.1<br>8.368<br>ND<br>0.443<br>ND<br>0.601<br>ND                                                                                  | -   |                       | Unit: r            |
| Analyte<br>A9THC<br>CBD<br>CBDA<br>A8THC<br>CBG<br>CBGA<br>CBC<br>CBCA<br>CBC<br>CBN                                                                                              | Description<br>Deltes Tetrahydrocannabir<br>Tetrahydrocannabirolic aci<br>Cannabidiol<br>Cannabidiolic acid<br>Deltes Tetrahydrocannabir<br>Tetrahydrocannabirari<br>Cannabigerol:<br>Cannabichromenei<br>Cannabichromenei acid*<br>Cannabichromeni acid*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nol 8.28<br>id 6.28<br>6.28<br>0.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8 | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>0.00                                  | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.441<br>ND<br>0.586<br>ND<br><loq< td=""><td>0.996<br/>ND<br/>16.2<br/>0.367<br/>ND<br/>0.444<br/>ND<br/>0.615<br/>ND<br/><loq< td=""><td>16.1<br/>9.360<br/>ND<br/>9.443<br/>ND<br/>9.601<br/>ND<br/><loq< td=""><td>-</td><td></td><td>Unit: r</td></loq<></td></loq<></td></loq<> | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq< td=""><td>16.1<br/>9.360<br/>ND<br/>9.443<br/>ND<br/>9.601<br/>ND<br/><loq< td=""><td>-</td><td></td><td>Unit: r</td></loq<></td></loq<> | 16.1<br>9.360<br>ND<br>9.443<br>ND<br>9.601<br>ND<br><loq< td=""><td>-</td><td></td><td>Unit: r</td></loq<>                        | -   |                       | Unit: r            |
| Analyte<br>A9THC<br>CBD<br>CBDA<br>CBDA<br>CBDA<br>CBDA<br>CBDA<br>CBDA<br>CBDA                                                                                                   | Description<br>Delta-5 Tetrahydrocannabin<br>Tetrahydrocannabinolic ac:<br>Cannabidol<br>Cannabidolic acid<br>Delta-8 Tetrahydrocannabivarin*<br>Cannabigerol*<br>Cannabigerol*<br>Cannabigerol*<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabi | nol 8.28<br>id 6.28<br>6.28<br>0.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8 | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.441<br>ND<br>0.586<br>ND<br><loq<br>0.947</loq<br>                                                                                                                                                                                                                                  | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996<br/>16.5</loq<br>                                                                                                                | 16.1<br>8.360<br>ND<br>0.443<br>ND<br>0.601<br>ND<br><loq<br>8.972<br/>16.5</loq<br>                                               | -   |                       | Unit: r            |
| Analyte<br>ASTIC<br>CBD<br>CBDA<br>ASTIC<br>CBDA<br>ASTIC<br>CBC<br>CBGA<br>CBC<br>CBGA<br>CBC<br>CBCA<br>CBN<br>Total THC                                                        | Description<br>Delta-5 Tetrahydrocannabin<br>Tetrahydrocannabinolic ac:<br>Cannabidol<br>Cannabidolic acid<br>Delta-8 Tetrahydrocannabivarin*<br>Cannabigerol*<br>Cannabigerol*<br>Cannabigerol*<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabi | nol 8.28<br>id 6.28<br>6.28<br>0.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8 | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05          | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.441<br>ND<br>0.586<br>ND<br><loq<br>0.947<br/>16.4</loq<br>                                                                                                                                                                                                                         | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996</loq<br>                                                                                                                         | 16.1<br>0.360<br>ND<br>0.443<br>ND<br>0.601<br>ND<br><loq<br>0.972</loq<br>                                                        | -   |                       | Unit n             |
| Analyte<br>ASTHC<br>CBD<br>CBD<br>CBDA<br>ASTHC<br>CBDA<br>CBDA<br>CBGA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBN<br>Total THC<br>Total CBD                                          | Description<br>Delta-5 Tetrahydrocannabin<br>Tetrahydrocannabinolic aci<br>Cannabidioli<br>Cannabidiolic acid<br>Delta-5 Tetrahydrocannabivarine<br>Cannabigerole<br>Cannabigerole<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>Cannabichromente<br>C | nol 8.28<br>id 6.28<br>6.28<br>0.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8 | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.441<br>ND<br>0.586<br>ND<br><loq<br>0.947<br/>16.4</loq<br>                                                                                                                                                                                                                         | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996<br/>16.5</loq<br>                                                                                                                | 16.1<br>8.360<br>ND<br>0.443<br>ND<br>0.601<br>ND<br><loq<br>8.972<br/>16.5</loq<br>                                               | -   |                       | Unit: n            |
| Analyte<br>ASTHC<br>CED<br>CEDA<br>ASTHC<br>CEGA<br>ASTHC<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEG                                                          | Description<br>Deltes Tetrahydrocanabir<br>Tetrahydrocanabirolic act<br>Cannabidol<br>Deltes Tetrahydrocanabir<br>Cannabidolic actd<br>Deltes Tetrahydrocanabir<br>Cannabigerole<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabirol<br>A9THC + (THCA × 0.877)<br>CBD + (CBDA × 0.877)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nol 0.28<br>id 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28              | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 8.947<br>ND<br>16.1<br>9.352<br>ND<br>8.441<br>ND<br>8.586<br>ND<br><loq<br>8.947<br/>16.4<br/>18.4</loq<br>                                                                                                                                                                                                                | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996<br/>16.5<br/>18.6</loq<br>                                                                                                       | 16.1<br>8.369<br>ND<br>0.443<br>ND<br>0.601<br>ND<br><loq<br>0.972<br/>16.5<br/>18.5</loq<br>                                      | -   |                       |                    |
| Analyte<br>ASTHC<br>CBD<br>CBD<br>CBDA<br>ASTHC<br>CBDA<br>CBDA<br>CBGA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBN<br>Total THC<br>Total CBD                                          | Description<br>Deltes Tetrahydrocanabir<br>Tetrahydrocanabirolic act<br>Cannabidol<br>Deltes Tetrahydrocanabir<br>Cannabidolic actd<br>Deltes Tetrahydrocanabir<br>Cannabigerole<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabirol<br>A9THC + (THCA × 0.877)<br>CBD + (CBDA × 0.877)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nol 8.28<br>id 6.28<br>6.28<br>0.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8.28<br>8 | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 8.947<br>ND<br>16.1<br>9.352<br>ND<br>8.441<br>ND<br>8.586<br>ND<br><loq<br>8.947<br/>16.4<br/>18.4</loq<br>                                                                                                                                                                                                                | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996<br/>16.5</loq<br>                                                                                                                | 16.1<br>8.369<br>ND<br>0.443<br>ND<br>0.601<br>ND<br><loq<br>0.972<br/>16.5<br/>18.5</loq<br>                                      | -   |                       | Unit: n            |
| Analyte<br>ASTHC<br>CED<br>CEDA<br>ASTHC<br>CEGA<br>ASTHC<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEGA<br>CEG                                                          | Description<br>Pellea Tetrahydrocanabir<br>Tetrahydrocanabirolic act<br>Cannabidol<br>Cannabidolic actd<br>Delta B Tetrahydrocanabivarine<br>Cannabigerole<br>Cannabigerole actd*<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabichromenet<br>Cannabich                                                                                                                                      | nol 0.28<br>id 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28              | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 8.947<br>ND<br>16.1<br>9.352<br>ND<br>8.441<br>ND<br>8.586<br>ND<br><loq<br>8.947<br/>16.4<br/>18.4</loq<br>                                                                                                                                                                                                                | 0.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996<br/>16.5<br/>18.6</loq<br>                                                                                                       | 16.1<br>0.360<br>ND<br>0.443<br>ND<br>0.601<br>ND<br><loq<br>0.972<br/>16.5<br/>18.5<br/>3/2019</loq<br>                           | -   |                       | <br><br>Pa         |
| Analyte<br>ASTRC<br>CBD<br>CBDA<br>ASTRC<br>CBGA<br>CBGA<br>CBGA<br>CBGA<br>CBGC<br>CBGA<br>CBGC<br>CBGA<br>CBGC<br>CBGA<br>CBGC<br>Total TRC<br>Total CBD<br>Total<br>Pesticides | Description Delta-5 Tetrahydrocannabir Tetrahydrocannabirolic aci Cannabidiol Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabivaria Cannabigerolic acid* Cannabichromente Cannabichroment                                                                                                                                                                                                                                                                                                                                                                      | nol 0.28<br>1d 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28              | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.586<br>ND<br><loq<br>0.947<br/>16.4<br/>18.4<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND</loq<br>                  | 6.996<br>ND<br>16.2<br>0.367<br>ND<br>0.444<br>ND<br>0.615<br>ND<br><loq<br>0.996<br/>16.5<br/>18.6</loq<br>                                                                                                       | 16.1<br>0.360<br>ND<br>0.443<br>ND<br>0.641<br>ND<br>4.00<br>0.972<br>16.5<br>18.5<br>3/2019<br>3/2019                             | -   |                       | Pa                 |
| Analyte<br>ASTRC<br>CBD<br>CBDA<br>ASTRC<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CB                                                                            | Description Delta 5 Tetrahydrocannabir Tetrahydrocannabirolic ac: Cannabidol Cannabidol Cannabidolic acid Delta 5 Tetrahydrocannabir Tetrahydrocannabivarine Cannabigerol: Cannabigerol: Cannabichromente acid* Cannabichromente acid                                                                                                                                                                                                                                                                                                                                                                      | no1 0.28<br>1d 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28              | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.586<br>ND<br><loq<br>0.947<br/>16.4<br/>18.4<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND</loq<br>                  | 6.996<br>ND<br>16.2<br>6.367<br>ND<br>0.444<br>ND<br>6.615<br>ND<br>4.00<br>6.905<br>18.6<br>18.6                                                                                                                  | 16.1<br>0.360<br>ND<br>0.443<br>ND<br>0.641<br>ND<br>4.00<br>0.972<br>16.5<br>18.5<br>3/2019<br>3/2019                             | -   |                       | Pa                 |
| Analyte<br>ASTRC<br>CBD<br>CBDA<br>ASTRC<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CBCA<br>CB                                                                            | Description Delta-5 Tetrahydrocannabir Tetrahydrocannabirolic aci Cannabidiol Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabivaria Cannabigerolic acid* Cannabichromente Cannabichroment                                                                                                                                                                                                                                                                                                                                                                      | no1 0.28<br>1d 0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28              | 5.05<br>0.00<br>0.534<br>4.24<br>0.00<br>0.00<br>0.493<br>0.00<br>4.72<br>0.00<br>4.72<br>0.00<br>0.00<br>5.05<br>0.605 | 0.947<br>ND<br>16.1<br>0.352<br>ND<br>0.586<br>ND<br><loq<br>0.947<br/>16.4<br/>18.4<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>2.00<br/>2.947<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND<br/>ND</loq<br>                  | 6.996<br>ND<br>16.2<br>6.367<br>ND<br>0.444<br>ND<br>6.615<br>ND<br>4.00<br>6.905<br>18.6<br>18.6                                                                                                                  | 16.1<br>0.360<br>ND<br>0.443<br>ND<br>0.641<br>ND<br>0.661<br>ND<br><loq<br>0.972<br/>16.5<br/>18.5<br/>3/2019<br/>3/2019</loq<br> |     |                       |                    |



# HOW TO READ OUR CERTIFICATE OF ANALYSIS (COA)

# PAGE 2-3 **PESTICIDE DATA**



All cannabis must be tested for the presence of a number of different contaminants, including pesticides. Danodan uses hemp that is grown using organic techniques, ensuring we use only the purest, cleanest hemp.

| Danodan Hempworks              |                    | Sample<br>Analysi                | Type: Ti<br>Date: 12;<br>Date: 13<br>Date: 12/ | (2/2019<br>/3/2019 |                                | Metrc Batch ID:<br>Metrc Sample ID:                                                                                                  |                                  | Report           | ID:                   | 04-28      | 19           |          | _     |
|--------------------------------|--------------------|----------------------------------|------------------------------------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-----------------------|------------|--------------|----------|-------|
| Pesticides                     |                    |                                  |                                                |                    |                                | Pesticides Analysis Date<br>Pesticides Batch ID: PST.)                                                                               |                                  | Method           | 1: EN 156<br>2/9 (ppr | 62         | Pass 😔       | L        |       |
| Sample Da                      | ZIH-PDF-PFD 1      |                                  | Limite                                         | 100 Notes          | Flater                         | Acalyte                                                                                                                              | THE BOX BED                      | TTT-GNB-SHT      | 1 incides             | 100 Notes  | Status       | 25/2019  |       |
| banectin                       | ND                 | ND                               |                                                | 0.1                | Pass                           | Metalaxyl                                                                                                                            | ND                               | ND               | 0.2                   | 0.1        | Pass         | 8        |       |
| cephate                        | ND                 | ND                               | 0.4                                            | 0.1                | Pass                           | Methiocarb                                                                                                                           | ND                               | ND               | 0.2                   | 0.1        | Pass         |          |       |
| cequinocyl                     | ND                 | ND                               | 2.0                                            | 1.5                | Pass                           | Methomyl                                                                                                                             | ND                               | ND               | 0.4                   | 0.1        | Pass         |          |       |
| etamiprid<br>Idicarb           | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | Methyl Parathion                                                                                                                     | ND                               | ND               | 0.2                   | 0.2<br>0.2 | Pass         |          |       |
| ldicarb<br>toxystrobin         | ND<br>ND           | ND<br>ND                         | 0.4                                            | 0.1<br>0.1         | Pass<br>Pass                   | MGK-264<br>Mvclobutanil                                                                                                              | ND<br>ND                         | ND               | 0.2                   | 0.2        | Pass         |          |       |
| fenazate                       | ND                 | ND                               | 0.2                                            | 0.1                | Page                           | Naled                                                                                                                                | ND                               | ND               | 0.5                   | 0.2        | Pass         | witz (%) | Notes |
| ifenthrin                      | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | Oxanyl                                                                                                                               | ND                               | ND               | 1.0                   | 0.1        | Pass         | - 150    |       |
| scalid                         | ND                 | ND                               | 0.4                                            | 0.1                | Pass                           | Paclobutrazol                                                                                                                        | ND                               | ND               | 0.4                   | 0.1        | Pass         | - 150    |       |
| arbaryl                        | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | Permethrins                                                                                                                          | ND                               | ND               | 0.2                   | 0.1        | Pass         | - 150    |       |
| arbofuran<br>Norantraniliprole | ND                 | ND<br>ND                         | 0.2                                            | 0.1<br>0.1         | Pass                           | Phosmet<br>Piperonyl Butoxide                                                                                                        | ND                               | ND               | 0.2<br>2.0            | 0.1        | Pass         | - 150    |       |
| lorantraniliprole              | ND                 | ND<br>ND                         | 0.2                                            | 0.1                | Page                           | Piperonyl Butoxide<br>Prollethrin                                                                                                    | ND<br>ND                         | ND               | 2.0                   | 0.1        | Pass         | - 150    |       |
| lorpyrifos                     | ND                 | ND                               | 0.2                                            | 0.1                | Page                           | Propiconazole                                                                                                                        | ND                               | ND               | 0.4                   | 0.1        | Pass         | - 150    |       |
| ofentezine                     | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | Proposur                                                                                                                             | ND                               | ND               | 0.2                   | 0.1        | Pass         | - 150    |       |
| rfluthrin                      | ND                 | ND                               | 1.0                                            | 0.5                | Pass                           | Pyrethrina                                                                                                                           | ND                               | ND               | 1.0                   | 0.5        | Pass         | - 150    |       |
| permethrin                     | ND                 | ND                               | 1.0                                            | 0.1                | Pass                           | Pyridaben                                                                                                                            | ND                               | ND               | 0.2                   | 0.1        | Pass         | - 150    |       |
| minozide                       | ND<br>ND           | ND<br>ND                         | 1.0                                            | 0.5<br>0.1         | Pass                           | Spinozad<br>Spiromezifen                                                                                                             | ND<br>ND                         | ND<br>ND         | 0.2                   | 0.1        | Pann<br>Pann | - 150    |       |
| ichlorvos (DDVP)               | ND                 | ND                               | 1.0                                            | 0.5                | Pass                           | Spirotetramat                                                                                                                        | ND                               | ND               | 0.2                   | 0.1        | Pass         | - 150    |       |
| imethoate                      | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | Spiroxamine                                                                                                                          | ND                               | ND               | 0.4                   | 0.1        | Pass         | - 150    |       |
| thoprophos                     | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | Tebuconazole                                                                                                                         | ND                               | ND               | 0.4                   | 0.1        | Pass         | - 150    |       |
| tofenprox                      | ND                 | ND                               | 0.4                                            | 0.1                | Pass                           | Thiscloprid                                                                                                                          | ND                               | ND               | 0.2                   | 0.1        | Pass         | - 150    |       |
| toxazole<br>enoxycarb          | ND<br>ND           | ND<br>ND                         | 0.2                                            | 0.1<br>0.1         | Pass                           | Thiamethoxam<br>Trifloxystrobin                                                                                                      | ND ND                            | ND               | 0.2                   | 0.1        | Pass         | - 150    |       |
| enoxycarb<br>enovroximate      | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           | TFITIORYSTFODIA                                                                                                                      | ND                               | NU               | 0.2                   | 0.1        | Pass         | - 150    |       |
| ipronil                        | ND                 | ND                               | 0.4                                            | 0.1                | Page                           |                                                                                                                                      |                                  |                  |                       |            |              | - 150    |       |
| lonicamid                      | ND                 | ND                               | 1.0                                            | 0.1                | Pass                           |                                                                                                                                      |                                  |                  |                       |            |              | - 150    | LR    |
| ludicannil                     | ND                 | ND                               | 0.4                                            | 0.1                | Pass                           |                                                                                                                                      |                                  |                  |                       |            |              | - 150    |       |
| exythiares<br>maralil          | ND<br>ND           | ND<br>ND                         | 1.0                                            | 0.1<br>0.1         | Pass                           |                                                                                                                                      |                                  |                  |                       |            |              | - 150    |       |
| sidacloprid                    | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           |                                                                                                                                      |                                  |                  |                       |            |              | - 150    |       |
| esoxim-methyl                  | ND                 | ND                               | 0.4                                            | 0.1                | Pass                           |                                                                                                                                      |                                  |                  |                       |            |              |          |       |
| lathion                        | ND                 | ND                               | 0.2                                            | 0.1                | Pass                           |                                                                                                                                      |                                  |                  |                       |            |              |          |       |
| sted, samples were receive     | d in good conditis | on and Quality<br>with an asteri | Control ak (+) an                              | samples met acco   | ptance criter<br>pe of accredi | and GMR 202-007. Results perta<br>a. This Certificants shall not<br>hatton and for informational p<br>compliance with GMR 202-064 an | be reproduced e<br>arposes only. | ucept in full, w | ithout ti             | e eritten  | 2 of 6       | J        |       |

### PAGE 4-5 RESIDUAL SOLVENT DATA

Certain solvents can be harmful to human health and safety if they remain in the final product. If a producer uses a solvent or concentrate in their product, thorough testing is required to ensure that potential residual amounts are below recognized safety limits. Danodan uses a high-purity concentrate in our yellow and red label products, so Residual Solvent testing is required. Our blue label products do not use any solvents or concentrates; therefore, no Residual Solvent testing is needed for blue label products.

| Danodan Hempworks<br>(503) 290-4079                                                                                         | Sample Type: Tin<br>Sample Date: 12/<br>Analysis Date: 12<br>Report Date: 12/5                                  | 2/2019<br>/3/2019                                                                   | Metrc Batch  <br>Metrc Sample |                                             | Harvest/Process Date:<br>Report ID:<br>LS-191204- |        | ÷       |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|---------------------------------------------------|--------|---------|
| Residual Solvents     Sample Data                                                                                           | 5                                                                                                               |                                                                                     | Solvents Ana<br>Solvents Bais | lysis Date: 12/3/2019<br>ch ID: RES_120319A | Method: EPA 5021A<br>Unit: µg/g (ppm)             | Pass ⊘ | 25/2019 |
| Analyte                                                                                                                     | Z.IH-PDF-PFD                                                                                                    | TTT-GNB-SHT                                                                         | RPD (%)                       | Limits                                      | LOQ Notes                                         | Status | 8       |
| 1,4-Dioxane                                                                                                                 | ND                                                                                                              | ND                                                                                  | 0.00                          | 388.0                                       | 50.0                                              | Pass   | •       |
| 2-Butanol                                                                                                                   | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 258.0                                             | Page   |         |
| 2-Ethoxyethanol                                                                                                             | ND                                                                                                              | ND                                                                                  | 0.00                          | 168.8                                       | 50.0                                              | Pass   |         |
| Acetone                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 258.0                                             | Pass   |         |
| Acetonitrile                                                                                                                | ND                                                                                                              | ND                                                                                  | 0.00                          | 410.0                                       | 50.0                                              | Page   |         |
| Benzene                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 2.0                                         | 2.0                                               | Pass   |         |
| Butanes                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 258.0                                             | Pass   |         |
| Cunene                                                                                                                      | ND                                                                                                              | ND                                                                                  | 0.00                          | 78.8                                        | 50.0                                              | Page   |         |
| Cyclohexane                                                                                                                 | ND                                                                                                              | ND                                                                                  | 0.00                          | 3889.0                                      | 50.0                                              | Page   |         |
| Ethyl Acetate                                                                                                               | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 250.0                                             | Pass   |         |
| Ethyl Ether                                                                                                                 | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 250.0                                             | Pass   |         |
| Ethylene Glycol                                                                                                             | ND                                                                                                              | ND                                                                                  | 0.00                          | 628.8                                       | 258.0                                             | Pass   |         |
| Ethylene Oxide                                                                                                              | ND                                                                                                              | ND                                                                                  | 0.00                          | 50.0                                        | 50.0                                              | Page   |         |
| Heptane                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 250.0                                             | Page   |         |
| Nexaties                                                                                                                    | ND                                                                                                              | ND                                                                                  | 0.00                          | 298.0                                       | 50.0                                              | Page   |         |
| Isopropanol (2-Propanol)                                                                                                    | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 50.0                                              | Pass   |         |
| Isopropyl Acetate                                                                                                           | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 258.0                                             | Pass   |         |
| Rethanol                                                                                                                    | <l00< td=""><td><l00< td=""><td>0.00</td><td>3000.0</td><td>250.0</td><td>Page</td><td></td></l00<></td></l00<> | <l00< td=""><td>0.00</td><td>3000.0</td><td>250.0</td><td>Page</td><td></td></l00<> | 0.00                          | 3000.0                                      | 250.0                                             | Page   |         |
| Dichloromethane                                                                                                             | ND                                                                                                              | ND                                                                                  | 0.00                          | 0.603                                       | 50.0                                              | Pass   |         |
| Pentanes                                                                                                                    | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 258.0                                             | Pass   |         |
| Propane                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 5000.0                                      | 250.0                                             | Pass   |         |
| Tetrahydrofuran                                                                                                             | ND                                                                                                              | ND                                                                                  | 0.00                          | 728.0                                       | 50.0                                              | Pass   |         |
| Toluene                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 898.8                                       | 50.0                                              | Page   |         |
| Xylenes                                                                                                                     | ND                                                                                                              | ND                                                                                  | 0.00                          | 2170.0                                      | 50.0                                              | Pass   |         |
|                                                                                                                             |                                                                                                                 |                                                                                     |                               |                                             |                                                   |        | I       |
| Lightenile Labs is accredited by OBLLA<br>coned, angular wave received in good co<br>approval of Lightenile Labs. Results m | andition and Quality Control (                                                                                  | unples net acceptance cri                                                           | teria. This Certifics         | te shall not be reproduce                   |                                                   | 4of6   | I       |

#### LOQ - (Limit of Quantitation):

The lowest quantity of a substance that can be reliably measured. If a product measures <LOQ, that means that the substance was detected, but at levels below which it can be accurately measured. This is different from ND, which means that none of that substance was detected.

#### **RPD (%) - Relative Percent Difference:**

Each sample we send to the lab is tested multiple times, and the results of the various tests are averaged to give the final results. RPD represents the average variation in measurement of a certain substance between multiple rounds of testing



2535 N Ross Ave Portland, OR 97227 (503) 493-2535

info@lightscale.com ORELAP #4112 OLCC #010-1003340D344

## Shot-10-10

**Danodan Hempworks** 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079 Sample Type: Tinctures Sample Date: 5/11/2021 Analysis Date: 5/12/2021 Report Date: 5/14/2021

Metrc Batch ID:

Metrc Sample ID:

Harvest/Process Date: 5/11/2021 Report ID: LS-210514-4 Sample Plan ID:SP-210511-1-B Sample Procedure: 160721\_LAB-SOP\_SampleCollection-v008

### Potency

Potency Analysis Date: 5/12/2021 Potency Batch ID: CAN\_051221B Potency Method: JAOAC 2015.1





Samples: RHZ-PBZ-DDD, RCG-MWT-WBR

| Analyte   | Description                   | LOQ    | RPD (%) | Min.   | Max.   | Avg.   |   |
|-----------|-------------------------------|--------|---------|--------|--------|--------|---|
| ∆9ТНС     | Delta-9 Tetrahydrocannabinol  | 0.0055 | 2.79    | 0.386  | 0.397  | 0.391  | - |
| THCA      | Tetrahydrocannabinolic acid   | 0.0055 | 0.00    | ND     | ND     | ND     | _ |
| CBD       | Cannabidiol                   | 0.0055 | 0.0774  | 11.2   | 11.2   | 11.2   | _ |
| CBDA      | Cannabidiolic acid            | 0.0055 | 1.57    | 0.207  | 0.210  | 0.209  | • |
| ∆8THC     | Delta-8 Tetrahydrocannabinol* | 0.0055 | 0.00    | ND     | ND     | ND     | _ |
| THCV      | Tetrahydrocannabivarin*       | 0.0055 | 0.00    | ND     | ND     | ND     | _ |
| CBG       | Cannabigerol*                 | 0.0055 | 0.990   | 0.219  | 0.221  | 0.220  | • |
| CBGA      | Cannabigerolic acid*          | 0.0055 | 0.00    | ND     | ND     | ND     | _ |
| CBC       | Cannabichromene*              | 0.0055 | 1.43    | 0.455  | 0.461  | 0.458  | - |
| CBCA      | Cannabichromenic acid*        | 0.0055 | 0.00    | ND     | ND     | ND     |   |
| CBN       | Cannabinol                    | 0.0055 | 0.00    | 0.0109 | 0.0109 | 0.0109 | • |
| Total THC | Δ9THC + (THCA × 0.877)        |        | 2.79    | 0.386  | 0.397  | 0.391  | - |
| Total CBD | CBD + (CBDA × 0.877)          |        | 0.101   | 11.4   | 11.4   | 11.4   | _ |
| Total     |                               |        | 0.0434  | 12.5   | 12.5   | 12.5   |   |

### Compliance

Potency

Within limits

Analysis Date: 5/12/2021

Pass ⊘

Prize Matter

Bryce Kidd, Ph.D. Lab Director



Chief Science Officer

Lightscale Labs is accredited by ORELAP (Lab #4112) for analysis in compliance with OAR 333-064 and OAR 333-067. Results pertain to submitted samples only. Unless otherwise noted, samples were received in good condition and Quality Control samples met acceptance criteria. This Certificate shall not be reproduced except in full, without the written approval of Lightscale Labs. Results marked with an asterisk (\*) are not within scope of accreditation and for informational purposes only.





2535 N Ross Ave Portland, OR 97227 (503) 493-2535

info@lightscale.com ORELAP #4112 OLCC #010-1003340D344



**Danodan Hempworks** 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079 Sample Type: Tinctures Sample Date: 5/11/2021 Analysis Date: 5/12/2021 Report Date: 5/14/2021 Metrc Batch ID:

Metrc Sample ID:

Harvest/Process Date: 5/11/2021 Report ID: LS-210514-4 Sample Plan ID:SP-210511-1-B Sample Procedure: 160721\_LAB-SOP\_SampleCollection-v008

### **Qualifier Flag Descriptions**

- J Reported result is an estimate the value is less than the minimum calibration level but greater than the estimated detection limit (EDL)
- U The analyte was not detected in the sample at the estimated detection limit (EDL)
- E Exceeds calibration range
- D Dilution data result was obtained from the analysis of a dilution
- B Analyte found in sample and associated blank
- C Co-eluting compound
- R Relative Percent Difference (RPD) outside control limits
- NR Analyte not reported because of problems in sample preparation or analysis
- ND Non-Detect
- X Results from reinjection/repeat/re-column data
- EMC Estimated maximum possible concentration indicates that a peak is detected but did not meet the method required criteria
- M Manual integration
- PS Peaks split
- HB Control acceptance criteria are exceeded high and the associated sample is below the detection limit
- LB Control acceptance criteria are exceeded low and the associated sample exceeds the regulatory limit
- ME Marginal Exceedance
- LR Low Recovery Analyte
- LOQ Limit of Quantitation





**Report Number:** 21-005248/D003.R00 **Report Date:** 05/18/2021 **ORELAP#:** OR100028 **Purchase Order:** 05/11/21 16:30 **Received:** 

| Customer:<br>Product identity: | Danodan Hemp Works<br>SHOT-10-10 |              |                |
|--------------------------------|----------------------------------|--------------|----------------|
| Client/Metrc ID:               |                                  |              |                |
| Laboratory ID:                 | 21-005248-0003                   | Sample Date: | 05/11/21 09:30 |
|                                |                                  | Summary      |                |
| Less than LOQ for all          | analytes                         |              |                |
|                                | anaytos.                         |              |                |

- -\_ -

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

-- \_

#### Microbiology:

Less than LOQ for all analytes.

- -

- - - - -

\_ \_ \_ \_ \_

-

Page 1 of 5
<u>www.columbialaboratories.com</u>
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Tester except an except of the samples are consented to the samples are consented to the samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.





| Report Number:  | 21-005248/D003.R00 |
|-----------------|--------------------|
| Report Date:    | 05/18/2021         |
| ORELAP#:        | OR100028           |
| Purchase Order: |                    |
| Received:       | 05/11/21 16:30     |

| Customer:            | Danodan Hemp Works<br>6019 NE MLK Jr Blvd<br>Portland Oregon 97211<br>United States of America (USA) |
|----------------------|------------------------------------------------------------------------------------------------------|
| Product identity:    | SHOT-10-10                                                                                           |
| Client/Metrc ID:     |                                                                                                      |
| Sample Date:         | 05/11/21 09:30                                                                                       |
| Laboratory ID:       | 21-005248-0003                                                                                       |
| Evidence of Cooling: | No                                                                                                   |
| Temp:                | 29 °C                                                                                                |

**Sample Results** 

| Microbiology            |        |        |       |        |         |          |                         |       |
|-------------------------|--------|--------|-------|--------|---------|----------|-------------------------|-------|
| Analyte                 | Result | Limits | Units | LOQ    | Batch   | Analyze  | Method                  | Notes |
| Aerobic Plate Count     | < LOQ  |        | cfu/g | 10     | 2104242 | 05/14/21 | AOAC 990.12 (Petrifilm) | Х     |
| E.coli                  | < LOQ  |        | cfu/g | 10     | 2104240 | 05/14/21 | AOAC 991.14 (Petrifilm) | Х     |
| Total Coliforms         | < LOQ  |        | cfu/g | 10     | 2104240 | 05/14/21 | AOAC 991.14 (Petrifilm) | Х     |
| Staphylococcus aureus   | < LOQ  |        | cfu/g | 10     | 2104243 | 05/13/21 | AOAC 2003.07            | Х     |
| Mold (RAPID Petrifilm)  | < LOQ  |        | cfu/g | 10     | 2104241 | 05/14/21 | AOAC 2014.05 (RAPID)    | Х     |
| Yeast (RAPID Petrifilm) | < LOQ  |        | cfu/g | 10     | 2104241 | 05/14/21 | AOAC 2014.05 (RAPID)    | Х     |
| Pseudomonas spp.        | < LOQ  |        | cfu/g | 10     | 2104244 | 05/14/21 | ISO 13720:1995          | X     |
| Metals                  |        |        |       |        |         |          |                         |       |
| Analyte                 | Result | Limits | Units | LOQ    | Batch   | Analyze  | Method                  | Notes |
| Arsenic                 | < LOQ  |        | mg/kg | 0.0497 | 2104288 | 05/12/21 | AOAC 2013.06 (mod.)     | Х     |
| Cadmium                 | < LOQ  |        | mg/kg | 0.0497 | 2104288 | 05/12/21 | AOAC 2013.06 (mod.)     | Х     |
| Lead                    | < LOQ  |        | mg/kg | 0.0497 | 2104288 | 05/12/21 | AOAC 2013.06 (mod.)     | Х     |
| Mercury                 | < LOQ  |        | mg/kg | 0.0249 | 2104288 | 05/12/21 | AOAC 2013.06 (mod.)     | X     |
| Nutrition               |        |        |       |        |         |          |                         |       |
| Analyte                 | Result | Limits | Units | LOQ    | Batch   | Analyze  | Method                  | Notes |
| Gluten                  | < LOQ  |        | mg/kg | 5.0    | 2104341 | 05/13/21 | AOAC 991.19 (mod.)      | X Q1  |

Page 2 of 5 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made. Testing in accordance with: OAR 333-007-0390





**Report Number:** 21-005248/D003.R00 **Report Date:** 05/18/2021 **ORELAP#:** OR100028 Purchase Order: 05/11/21 16:30 **Received:** 

These test results are representative of the individual sample selected and submitted by the client.

### Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

### Units of Measure

cfu/g = Colony forming units per gram mg/kg = Milligram per kilogram = parts per million (ppm) % wt =  $\mu g/g$  divided by 10,000

**Glossary of Qualifiers** X: Not ORELAP accredited.

Approved Signatory

**Derrick Tanner** General Manager

www.columbialaboratories.com

Page 3 of 5

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made





**Report Number:** 21-005248/D003.R00 **Report Date:** 05/18/2021 **ORELAP#:** OR100028 **Purchase Order: Received:** 05/11/21 16:30

| Company: Danodan Hempworks             |         |              |     |        | An      | alysis     | Requ        | ested  |    |      |                                                                                           | PO Number:                            |                           |                      |  |
|----------------------------------------|---------|--------------|-----|--------|---------|------------|-------------|--------|----|------|-------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|----------------------|--|
| Contact: Steven Sands                  |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
| Street: 6019 NE MLK Jr. Blvd           |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
| City: Portland State: OR Zip           | 97211   |              |     |        |         |            | as          | 4      |    |      | Custom Reporting:                                                                         |                                       |                           |                      |  |
| Email Results: Steve@danodan.com       |         |              |     |        |         |            |             |        |    |      | Report to State -  METRC or  Other:  Turn-around time:  Standard  Rush *  Priority Rush * |                                       |                           |                      |  |
| Ph: (508) 3670896 🛛 Fx Results: (      | )       | s            |     |        |         |            |             |        |    |      | Tur                                                                                       | n-around time                         | *Ask for availa           |                      |  |
| illing (if different):                 |         | Meta         |     |        |         | /east      | nome        |        |    |      | Sampled                                                                                   | by:                                   | ASK TOT AVOID             | ionity               |  |
| Lab<br>ID Client Sample Identification | Date    | Heavy Metals | APC | E Coli | Staph   | Mold/Yeast | Pseudomonas | Gluten |    |      | Sample<br>Type †                                                                          | Report units<br>(potency)             | Serving size<br>(edibles) | Comments/Metrc ID    |  |
| TB-35                                  | 4/14/21 | 1            | 1   | 1      | 1       | 1          | 1           | 1      |    |      | Т                                                                                         | (potency)                             | (eubles)                  | commentsymetre is    |  |
| 2 SHOT-15-17                           | 5/11/21 | 1            | 1   | 1      | 1       | 1          | 1           | 1      |    |      | т                                                                                         | · · · · · · · · · · · · · · · · · · · |                           |                      |  |
| 5 SHOT-10-10                           | 5/11/21 | 1            | 1   | 1      | 1       | 1          | 1           | 1      |    |      | т                                                                                         |                                       |                           |                      |  |
| <b>Ц</b> ТВ-34                         | 2/8/21  | 1            | 1   | 1      | 1       | 1          | 1           | 1      |    |      | т                                                                                         |                                       |                           |                      |  |
|                                        |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
|                                        |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
|                                        |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
|                                        |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
|                                        |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
|                                        |         |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           |                      |  |
| Relinquished By: Date                  | e Time  | Shell        |     | Receiv | red by: |            |             | Da     | te | Time |                                                                                           |                                       | Lab Use On                |                      |  |
| StevenSands still                      | 1 UI00  |              |     |        |         |            |             |        |    |      |                                                                                           |                                       |                           | or  Client dro       |  |
| /////                                  |         | -            |     |        |         |            |             |        | -  |      | 1.000                                                                                     |                                       |                           | mp (°C): <u>29</u> . |  |
|                                        |         |              |     | 1      |         |            |             |        |    |      | 100000000000000000000000000000000000000                                                   |                                       |                           |                      |  |

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms. 12423 NE Whitaker Way Page \_\_\_\_\_ of \_\_\_\_ www.columbialaboratories.com Portland, OR 97230 info@columbialaboratories.com

Page 4 of 5
<u>www.columbialaboratories.com</u>
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.





**Report Number:** 21-005248/D003.R00 **Report Date:** 05/18/2021 **ORELAP#:** OR100028 **Purchase Order:** Received: 05/11/21 16:30

Explanation of QC Flag Comments:

| Code | Explanation                                                                                 |
|------|---------------------------------------------------------------------------------------------|
| Q    | Matrix interferences affecting spike or surrogate recoveries.                               |
| Q1   | Quality control result biased high. Only non-detect samples reported.                       |
| Q2   | Quality control outside QC limits. Data considered estimate.                                |
| Q3   | Sample concentration greater than four times the amount spiked.                             |
| Q4   | Non-homogenous sample matrix, affecting RPD result and/or % recoveries.                     |
| Q5   | Spike results above calibration curve.                                                      |
| Q6   | Quality control outside QC limits. Data acceptable based on remaining QC.                   |
| R    | Relative percent difference (RPD) outside control limit.                                    |
| R1   | RPD non-calculable, as sample or duplicate results are less than five times the LOQ.        |
| R2   | Sample replicates RPD non-calculable, as only one replicate is within the analytical range. |
| LOQ1 | Quantitation level raised due to low sample volume and/or dilution.                         |
| LOQ2 | Quantitaion level raised due to matrix interference.                                        |
| В    | Analyte detected in method blank, but not in associated samples.                            |
| B1   | The sample concentration is greater than 5 times the blank concentration.                   |
| B2   | The sample concentration is less than 5 times the blank concentration.                      |

Page 5 of 5

Page 5 of 5
<u>www.columbialaboratories.com</u>
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.
Tester except an except an