

2535 N Ross Ave Portland, OR 97227 (503) 493-2535

Active-01

Danodan Hempworks 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079 Sample Type: Tinctures Sample Date: 3/30/2021 Analysis Date: 4/1/2021 Report Date: 4/6/2021 Metrc Batch ID:

Metrc Sample ID:

Harvest/Process Date: 3/29/2021 Report ID: LS-210405-47 Sample Plan ID:SP-210330-4-Q-T Sample Procedure: 160721_LAB-SOP_SampleCollection-v008

Potency

Potency Analysis Date: 4/1/2021 Potency Batch ID: CAN_040121D Potency Method: JAOAC 2015.1

Total THC 0.0591%

info@lightscale.com

OLCC #010-1003340D344

ORELAP #4112

Samples: TPS-GJR-CGF, FCZ-XDS-WHS, PMD-RHM-NSN, PNZ-FCJ-FZT, WBB-CDT-GMZ, JDM-DWR-CPH, RMT-CJD-NPR, XRD-TTP-HWN

Analyte	Description	LOQ	RSD (%)	Min.	Max.	Avg.
Д9ТНС	Delta-9 Tetrahydrocannabinol	0.0058	3.74	0.651	0.725	0.681
THCA	Tetrahydrocannabinolic acid	0.0058	0.00	ND	ND	ND
CBD	Cannabidiol	0.0058	1.39	17.2	17.9	17.4
CBDA	Cannabidiolic acid	0.0058	5.46	0.0357	0.0427	0.0382
∆8THC	Delta-8 Tetrahydrocannabinol*	0.0058	0.00	ND	ND	ND
THCV	Tetrahydrocannabivarin*	0.0058	0.00	ND	ND	ND
CBG	Cannabigerol*	0.0058	1.88	0.225	0.238	0.233
CBGA	Cannabigerolic acid*	0.0058	0.00	ND	ND	ND
CBC	Cannabichromene*	0.0058	3.30	0.547	0.598	0.570
CBCA	Cannabichromenic acid*	0.0058	0.00	ND	ND	ND
CBN	Cannabinol	0.0058	4.69	0.0242	0.0277	0.0261
Total THC	Δ9THC + (THCA × 0.877)		3.74	0.651	0.725	0.681
Total CBD	CBD + (CBDA × 0.877)		1.38	17.2	18.0	17.4
Total			1.42	18.7	19.5	18.9

Compliance

Potency

Within limits

Analysis Date: 4/1/2021

Pass ⊘

Prize Hates

Bryce Kidd, Ph.D. Lab Director

Chief Science Officer

Lightscale Labs is accredited by ORELAP (Lab #4112) for analysis in compliance with OAR 333-064 and OAR 333-067. Results pertain to submitted samples only. Unless otherwise noted, samples were received in good condition and Quality Control samples met acceptance criteria. This Certificate shall not be reproduced except in full, without the written approval of Lightscale Labs. Results marked with an asterisk (*) are not within scope of accreditation and for informational purposes only.

2535 N Ross Ave Portland, OR 97227 (503) 493-2535

Active-01

Danodan Hempworks 6019 NE MLK JR. BLVD. PORTLAND, OR 97217 (503) 290-4079 Sample Type: Tinctures Sample Date: 3/30/2021 Analysis Date: 4/1/2021 Report Date: 4/6/2021 Metrc Batch ID:

Metrc Sample ID:

Harvest/Process Date: 3/29/2021 Report ID: LS-210405-47 Sample Plan ID:SP-210330-4-Q-T Sample Procedure: 160721_LAB-SOP_SampleCollection-v008

Qualifier Flag Descriptions

J Reported result is an estimate - the value is less than the minimum calibration level but greater than the estimated detection limit (EDL)

info@lightscale.com

OLCC #010-1003340D344

ORELAP #4112

- U The analyte was not detected in the sample at the estimated detection limit (EDL)
- E Exceeds calibration range
- D Dilution data result was obtained from the analysis of a dilution
- B Analyte found in sample and associated blank
- C Co-eluting compound
- R Relative Percent Difference (RPD) outside control limits
- NR Analyte not reported because of problems in sample preparation or analysis
- ND Non-Detect
- X Results from reinjection/repeat/re-column data
- EMC Estimated maximum possible concentration indicates that a peak is detected but did not meet the method required criteria
- M Manual integration
- PS Peaks split
- HB Control acceptance criteria are exceeded high and the associated sample is below the detection limit
- LB Control acceptance criteria are exceeded low and the associated sample exceeds the regulatory limit
- ME Marginal Exceedance
- LR Low Recovery Analyte
- LOQ Limit of Quantitation

HOW TO READ OUR CERTIFICATE OF ANALYSIS (COA)

Using Lightscale Labs, we perform all tests required under state law for recreational cannabis, medical cannabis, and industrial hemp. Chromatography is used for all required tests, a technique where liquid or gas separates different cannabinoids, pesticides, and residual solvents so that each can be identified and measured precisely.

PAGE I CANNABINOID POTENCY

TEST & HARVEST DATES

Here you can see the dates related to this particular batch of product, including when it was processed, sampled, analyzed, and when the report was finished.

Total CBD and THC content in mg/ml and percentage.

Δ9-THC, THCA, CBD, CBDA, and CBN in accordance with OAR 333-007-0430, plus minor cannabinoids.

PASS or FAIL results for Pesticides, Solvents, and Potency within this COA.

Sh	ot-15-'	12							
	01-13-								
Danodan Hemp		Sample Type: Tincture Sample Date: 12/2/201		Met	rc Batch ID:			Harvest/Proce Report ID:	ss Date: 11/25/2019
(503) 290-4079		Analysis Date: 12/3/20 Report Date: 12/9/201		Met	rc Sample ID:			LS-1912	204-28
Potency									
Potency Analys	is Date: 12/3/2019								
	ID: CAN_120319C d: JAOAC 2015.1						1		
						-	1		
40	– /		TotalCBD		-				
16.	5 mg/	mL	151%		1			4107	
			1.01/0						
_					100				
~ ~	72 mg /	/	Total THC		1.0				
U.Y)/2 md/	mL	0.0892%						
			0.0002/0		10				
Samples: ZJH-PI	0F-PFD, TTT-GNB-SHT								
Samples: ZJH-PI Density = 1.09 g/	0F-PFD, TTT-GNB-SHT mL								10
								1.10	-
Analyte	Description	LOQ	RPD (%)	Min.	Max.	Avg.		a ser	Unit:
Analyte A9THC	Description Delta-9 Tetrahydrocannabi	inol 0.28	5.05	0.947	0.996	Avg. 8.972	-	a ser	Unit:
Analyte A9THC THCA	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac	inol 0.28 cid 0.28	5.05	0.947 ND	0.996 ND	Avg. 8.972 ND	-	-	Unit:
Analyte A9THC	Description Delta-9 Tetrahydrocannabi	inol 0.28	5.05	0.947	0.996	Avg. 8. 772 ND 16.1	2		Unit:
Analyte A9THC THCA CBD	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac	inol 0.28 cid 0.28	5.05	0.947 ND	0.996 ND			000	Unit:
Analyte A9THC THCA CBD	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol	inol 0.28 cid 0.28 0.28 0.28	5.05 0.00 0.534	0.947 ND 16.1	0.996 ND 16.2	16.1	2		Unit:
Analyte A9THC THCA CBD CBDA	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid	inol 0.28 cid 0.28 0.28 0.28	5.05 0.00 0.534 4.24	0.947 ND 16.1 0.352	0.996 ND 16.2 0.367	16.1 0.360	2		Unit:
Analyte A9THC THCA CBD CBDA A&THC THCV	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabi	inol 0.28 cid 0.28 0.28 0.28 inol* 0.28	5.05 0.00 0.534 4.24 0.00	0.947 ND 16.1 0.352 ND	0.996 ND 16.2 0.367 ND	16.1 0.360 ND	-		Unit:
Analyte A9THC THCA CBD CBDA ASTHC	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabivarin+	inol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00	0.947 ND 16.1 0.352 ND ND	0.996 ND 16.2 0.367 ND ND	16.1 0.360 ND ND	-		Unit:
Analyte A9THC THCA CBD CBDA A8THC THCV CBG CBGA	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabivarine Cannabigerol+	inol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493	0.947 ND 16.1 0.352 ND ND 0.441	0.996 ND 16.2 0.367 ND ND 0.444	16.1 0.360 ND 0.443	-		Unit
Analyte A9THC THCA CBD CBDA A&THC THCV CBG	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabivarin+ Cannabigerol+ Cannabigerolic acid+	inol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00	0.947 ND 16.1 0.352 ND ND 0.441 ND	0.996 ND 16.2 0.367 ND 0.444 ND	16.1 0.360 ND 0.443 ND	-		Unit:
Analyte A9THC THCA CBD CBDA ASTHC THCV CBG CBGA CBC CBCA	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabiurine Cannabigerole acide Cannabigerole acide Cannabigerole acide	inol 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72	0.947 ND 16.1 0.352 ND ND 0.441 ND 0.586	0.996 ND 16.2 0.367 ND 0.444 ND 0.615	16.1 0.360 ND 0.443 ND 0.601	-		Unit:
Analyte A9THC THCA CBD CBDA A8THC THCV CBG CBGA CBC	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabiolic ac Cannabidioli Cannabidiolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabivarine Cannabigerole Cannabigerole acide Cannabigerole acide	inol 6.28 cid 6.28 6.28 inol* 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND	16.1 0.360 ND 0.443 ND 0.601 ND	-		Unit
Analyte AsTHC CBD CBDA ASTHC CBG CBGA CBC CBCA CBN	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabiarin Cannabigerol: Cannabigerol: Cannabichromet Cannabichromet Cannabichromet acid+ Cannabichromet acid+	inol 6.28 cid 6.28 6.28 inol* 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq< td=""><td>0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq< td=""><td>16.1 8.360 ND 8.443 ND 8.601 ND <loq< td=""><td>-</td><td></td><td>Unit</td></loq<></td></loq<></td></loq<>	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq< td=""><td>16.1 8.360 ND 8.443 ND 8.601 ND <loq< td=""><td>-</td><td></td><td>Unit</td></loq<></td></loq<>	16.1 8.360 ND 8.443 ND 8.601 ND <loq< td=""><td>-</td><td></td><td>Unit</td></loq<>	-		Unit
Analyte ASTHC CBD CBDA ASTHC CBD CBDA ASTHC CBC CBGA CBC CBGA CBC CBCA CBN Total THC	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidol Cannabidolic acid Delta-8 Tetrahydrocannabivarin+ Cannabigerol+ Cannabigerol+ Cannabigerol+ Cannabichromen+ Cannabichromen+ Cannabichromen+ Cannabichromen+ Cannabichromen+ Cannabichol A9THC + (THCA × 0.877)	inol 6.28 cid 6.28 6.28 inol* 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 0.00 5.05	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996</loq 	16.1 0.360 ND 0.443 ND 0.601 ND <loq 0.972</loq 	-		Unit
Analyte A9THC CBD CBDA A8THC CBDA CBDA CBDA CBDA CBDA CBDA CBDA CBD	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidol Cannabidolic acid Delta-8 Tetrahydrocannabivarine Cannabigerola Cannabigerola Cannabigerola Cannabichromene Cannabi	inol 6.28 cid 6.28 6.28 inol* 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 4.72 0.00 5.05 0.605	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5</loq 	16.1 0.360 ND 0.443 ND 0.601 ND <loq 0.972 16.5</loq 	-		Unit
Analyte ASTNC CBD CBDA ASTNC CBG ASTNC CBG CBGA CBGA CBC CBGA CBN Total ThC Total CBD	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidol Cannabidolic acid Delta-8 Tetrahydrocannabivarine Cannabigerola Cannabigerola Cannabigerola Cannabichromene Cannabi	inol 6.28 cid 6.28 6.28 inol* 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 4.72 0.00 5.05 0.605	0.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5</loq 	16.1 0.360 ND 0.443 ND 0.601 ND <loq 0.972 16.5</loq 	-		Unit
Analyte A9THC CBD CBDA A8THC CBDA CBDA CBDA CBDA CBDA CBDA CBDA CBD	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabinolic ac Cannabidiol Cannabidiolic acid Delta-8 Tetrahydrocannabid Tetrahydrocannabidran Cannabigerol: Cannabigerol: Cannabichromenic acid+ Cannabichromenic acid+ Cannabichro	inol 6.28 cid 6.28 6.28 inol* 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 4.72 0.00 5.05 0.605	8.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5</loq 	16.1 8.369 ND 0.443 ND 0.601 ND <loq 0.972 16.5 18.5</loq 	-		Unit
Analyte ASTHC THCA CED CEDA ASTHC CED CEDA ASTHC CEGA CEGA CEGA CEGA CEGA CEC CEGA Total THC Total CED Total	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabi Cannabidol Delta-8 Tetrahydrocannabi Tetrahydrocannabivaria Cannabigerola Cannabigerola Cannabigerola Cannabichromene	inol 6.28 c1d 0.28 inol* 6.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 4.72 0.00 5.05 0.605	6.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4</loq 	0.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5 18.6</loq 	16-1 0.360 ND 0.443 ND 0.601 ND <l0q 0.972 16.5 18.5</l0q 	-		
Analyte ASTHC CBD CEDA ASTHC CEDA ASTHC CEDA ASTHC CEDA CEDA CEDA CEDA CEDA CEDA CEDA CED	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabi Cannabidol Cannabidolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabiyarole Cannabigerole Cannabigerole Cannabichromene Cannabichromenic acide Cann	Inol 6.28 cid 6.28 e.28 6.28 inol* 6.28 e.28 6.28 within limits 1000000000000000000000000000000000000	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 4.72 0.00 5.05 0.605	6.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4 18.4</loq 	6.996 ND 16.2 0.367 ND 0.444 ND 0.615 ND <loq 0.996 16.5 18.6</loq 	16.1 0.360 ND 0.443 ND 0.641 ND <l0q 0.972 16.5 18.5 3/2019</l0q 	-		
Analyte ASTRC CBD CBDA ASTRC CBCA CBCA CBCA CBCA CBCA CBCA CBCA CB	Description Delta-9 Tetrahydrocannabi Tetrahydrocannabi Cannabidol Cannabidolic acid Delta-8 Tetrahydrocannabi Tetrahydrocannabiyarole Cannabigerole Cannabigerole Cannabichromene Cannabichromenic acide Cann	Inol 6.28 cid 6.28 e.28 6.28 inol* 8.28 e.28 6.28 within limits Within limits	5.05 0.00 0.534 4.24 0.00 0.00 0.493 0.00 4.72 0.00 4.72 0.00 5.05 0.605	6.947 ND 16.1 0.352 ND 0.441 ND 0.586 ND <loq 0.947 16.4 18.4 18.4</loq 	6.996 ND 16.2 6.367 ND 0.444 ND 6.615 ND 4.00 6.905 18.6 18.6	16.1 0.360 ND 0.443 ND 0.641 ND <l0q 0.972 16.5 18.5 3/2019</l0q 	-		P

HOW TO READ OUR CERTIFICATE OF ANALYSIS (COA)

PAGE 2-3 **PESTICIDE DATA**

All cannabis must be tested for the presence of a number of different contaminants, including pesticides. Danodan uses hemp that is grown using organic techniques, ensuring we use only the purest, cleanest hemp.

Danodan Hempworks (503) 290-4079	Sampi Analys	Sample Type: Tinctures Sample Date: 12/2/2019 Analysis Date: 12/3/2019 Report Date: 12/9/2019			Metrc Batch ID: Metrc Sample ID:	Report	Harvest/Process Date: 11/25/2019 Report ID: LS-191204-28						
Pesticides Sample Da	ta					Pesticides Analysis Date: 12 Pesticides Batch ID: PST_12			d: EN 156 a/a (pprr		Pass 😔	25/2019	
	ZIH-PDF-PFD							TTT-GNB-SHT				8	
Abamectin Aceohate	ND ND	ND ND	0.5	0.1	Pass	Metalaxyl Methiocarb	ND ND	ND ND	0.2	0.1	Pass	~	
icephate iceouinocyl	ND	ND ND	0.4 2.0	0.1 1.5	Page	Methiocarb Methomy1	ND ND	ND	0.2	0.1	Pass		
Acetamiorid	ND	ND	8.2	0.1	Page	Methyl Parathion	ND	ND	0.2	0.2	Page		
Aldicarb	ND	ND	0.4	0.1	Pass	MGK-264	ND	ND	0.2	0.2	Pass		
Azoxystrobin	ND	ND	0.2	0.1	Pass	Myclobutanil	ND	ND	0.2	0.1	Pass		
lifenazate	ND	ND	0.2	0.1	Pass	Naled	ND	ND	0.5	0.2	Pass	wits (%)	Note
Sifenthrin	ND	ND	0.2	0.1	Pass	Oxamyl	ND	ND	1.0	0.1	Pass	- 150	
Soscalid	ND	ND	0.4	0.1	Pass	Paclobutrazol	ND	ND	0.4	0.1	Pass	- 150	
Carbaryl	ND	ND	8.2	0.1	Pass	Permethrina	ND	ND	0.2	0.1	Pass	- 158	
Carbofuran	ND	ND ND	8.2	0.1 0.1	Pass	Phoamet	ND ND	ND	0.2	0.1	Pasa	- 150	
Chlorantraniliprole Chlorfenapyr	ND	ND ND	0.2	0.1	Pass	Piperonyl Butoxide Prallethrin	ND ND	ND	2.0	0.1	Pass	- 150	
Chlorovrifos	ND	ND	0.2	0.1	Page	Propiconazole	ND	ND	0.2	0.1	Pass	- 150	
Clofentezine	ND	ND	0.2	0.1	Pass	Proposur	ND	ND	0.2	0.1	Pass	- 150	
Cyfluthrin	ND	ND	1.0	0.5	Pass	Pyrethrins	ND	ND	1.0	0.5	Pass	- 150	
Cypermethrin	ND	ND	1.0	0.1	Pass	Pyridaben	ND	ND	0.2	0.1	Pass	- 150	
Daminozide	ND	ND	1.0	0.5	Pass	Spinozad	ND	ND	0.2	0.1	Pass	- 150	
Diszinon	ND	ND	0.2	0.1	Pass	Spiromezifen	ND	ND	0.2	0.1	Pass	- 150	
Dichlorves (DDVP)	ND ND	ND ND	1.0	0.5 0.1	Pass	Spirotetramat	ND ND	ND ND	0.2 0.4	0.1	Pasa	- 150	
Dimethoate Ethoprophos	ND	ND	0.2	0.1 0.1	Page	Spiroxamine Tebuconazole	ND ND	ND ND	0.4	0.1	Pass	- 150	
Etofenprox	ND	ND	0.2	0.1	Pass	Thiscloprid	ND	ND	0.4	0.1	Pass	- 150	
Etoxazole	ND	ND	0.2	0.1	Pass	Thiamethoxam	ND	ND	0.2	0.1	Pass	- 150	
Fenoxycarb	ND	ND	0.2	0.1	Pass	Trifloxystrobin	ND	ND	0.2	0.1	Pass	- 150	
Ferpyroximate	ND	ND	0.4	0.1	Pass							- 150	
Fipronil	ND	ND	0.4	0.1	Pass							- 150	LR
Flonicamid Fludiozonil	ND ND	ND ND	1.0	0.1 0.1	Pass							- 150	LR
Fludiosonil Hexythiazos	ND	ND	0.4	0.1	Pass							- 150	
Imazalil	ND	ND	0.2	8.1	Pass							- 150	
Imidacloprid	ND	ND	0.4	0.1	Pass							- 150	
Kresoxim-methyl	ND	ND	0.4	0.1	Pass								
Malathion	ND	ND	0.2	0.1	Pass								
noted, samples were received	in good condit	tion and Quali-	ty Control	samples net a	coeptance crites	and OAR 221-047. Secults pertain rim. This Cartificate shall not t littles and for informational per	e reproduced a				2 of 6	I	

PAGE 4-5 RESIDUAL SOLVENT DATA

Certain solvents can be harmful to human health and safety if they remain in the final product. If a producer uses a solvent or concentrate in their product, thorough testing is required to ensure that potential residual amounts are below recognized safety limits. Danodan uses a high-purity concentrate in our yellow and red label products, so Residual Solvent testing is required. Our blue label products do not use any solvents or concentrates; therefore, no Residual Solvent testing is needed for blue label products.

Danodan Hempworks (503) 290-4079	Sample Type: Tin Sample Date: 12/ Analysis Date: 12 Report Date: 12/5	2/2019 /3/2019	Metrc Batch I Metrc Sample		Report ID:	Harvest/Process Date: 11/25/2019 Report ID: LS-191204-28		
Residual Solvents Sample Data	s		Solvents Anal Solvents Batc	lysis Date: 12/3/2019 ch ID: RES_120319A	Method: E1 Unit: µg/g		25/2019	
Analyte	ZJH-PDF-PFD	TTT-GNB-SHT	RPD (%)	Limits	100 1	Notes Status	8	
1,4-Dioxane	ND	ND	0.00	388.0	50.0	Pasa	.0	
2-Butanol	ND	ND	0.00	5000.0	250.0	Pass		
2-Ethoxywthanol	ND	ND	0.00	168.8	50.0	Pass		
Acetone	ND	ND	0.00	5000.0	250.0	Pass		
Acetonitrile	ND	ND	0.00	410.0	50.0	Pass		
Benzene	ND	ND	0.00	2.0	2.0	Pass	N	
Butanes	ND	ND	0.00	5000.0	250.0	Pass		
Cumene	ND	ND	0.00	70.0	50.0	Pass		
Cyclohexane	ND	ND	0.00	3880.0	50.0	Pass		
Ethyl Acetate	ND	ND	0.00	5000.0	250.0	Pass		
Ethyl Ether	ND	ND	0.00	5000.0	250.0	Pass		
Ethylene Glycol	ND	ND	0.00	628.0	258.0	Page		
Ethylene Oxide	ND	ND	0.00	50.0	50.0	Page		
Heptane	ND	ND	0.00	5000.0	258.0	Page		
Nexanes	ND	ND	0.00	298.8	50.0	Page		
Isopropanol (2-Propanol)	ND	ND	0.00	5000.0	50.0	Pass		
Isopropyl Acetate	ND	ND	0.00	5000.0	250.0	Pass		
Methanol	<l00< td=""><td><l00< td=""><td>0.00</td><td>3000.0</td><td>258.0</td><td>Page</td><td></td></l00<></td></l00<>	<l00< td=""><td>0.00</td><td>3000.0</td><td>258.0</td><td>Page</td><td></td></l00<>	0.00	3000.0	258.0	Page		
Dichloromethane	ND	ND	0.00	6.693.0	50.0	Page		
Pentanes	ND	ND	0.00	5000.0	250.0	Pass		
Propane	ND	ND	0.00	5000.0	250.0	Pass		
Tetrahydrofuran	ND	ND	0.00	728.0	50.0	Pass		
Toluene	ND	ND	0.00	898.0	50.0	Page		
Xylenez	ND	ND	0.00	2170.0	50.0	Pass		
							I	
Liphtonik Lake in scoredited by OBLA noted, amples were received in good o approval of Liphtonik Lake. Resits m	ondition and Quality Control :	samples met acceptance cri	teria. This Certifica	te shall not be reproduc	ed except in full, with	s otherwise at the written 4 of 6	I	

LOQ - (Limit of Quantitation):

The lowest quantity of a substance that can be reliably measured. If a product measures <LOQ, that means that the substance was detected, but at levels below which it can be accurately measured. This is different from ND, which means that none of that substance was detected.

RPD (%) - Relative Percent Difference:

Each sample we send to the lab is tested multiple times, and the results of the various tests are averaged to give the final results. RPD represents the average variation in measurement of a certain substance between multiple rounds of testing